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Abstract

The survey gives an introduction to algebraic K­theory. We first introduce the classi­

cal definition of K0,K1 groups and some properties of them. Then we apply Quillen’s

plus construction to construct generalKn and show that they are accord with the previous

definitions when n = 0, 1. Finally, we give a brief introduction to K­theory spectrum.

Contents

1 Classical K­theory: K0 and K1 1

2 Quillen’s Plus Construction 3

3 An Introduction to K­theory Spectrum 7

1 Classical K­theory: K0 and K1

The beginning of algebraic K­theory is due to Grothendieck, in order to formulate his gener­

alization of the Riemann­Roch Theorem to higher dimensions. He defined the Grothendieck

group of a subcategory of an abelian category and in the case of rings, it becomes:

Definition 1.1 (K0). Let R be a ring. Let F0(R) be the free abelian group generated by [P ]

of isomorphism classes of finitely generated projective modules over R. Let K0(R) be the

quotient of F0(R) by the subgroup generated by all elements [P ]− [P ′]− [P ′′] for every short

exact sequence 0 → P ′ → P → P ′′ → 0.
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Actually Grothendieck defined K0 first in the way of vector bundles. The two ways of

definitions are the same due to an important theorem in topological K­theory relating vector

bundles and projective modules:

Theorem 1.2 (Swan). LetX be a compact Hausdorff space. The category of real vector bundle

over X is equivalent to the category of finitely generated projective module over C∞(X). The

correspondence is given by sending a vector bundle to the C∞(X)­module of smooth sections.

Under such identification, K0 can also be considered as a group of vector bundles over

a compact Hausdorff space X . Atiyah and Hirzebruch, motivated by Grothendieck’s work,

defined higher topological K­groups K−n := K0(S
nX), where SX is the suspension of X .

Later, Bass gave the definition of K1(R) as an algebraic analogue of topological K−1 by the

following observation:

Observation. A vector bundle on SX is trivial on each cone CX since CX is contractible.

Thus, the structure of the vector bundle is determined by how bundles are glued on the middle

X .

Converting this into language of projective modules, we get:

Definition 1.3 (K1). LetR be a ring. Let F1(R) be the free abelian group generated by isomor­

phism classes of maps [P α−→ P ] where P is a finitely generated projective module and α is an

isomorphism. LetK1(R) be the quotient of F1(R) by the following relations:

(a) [P
α−→ P ] = [P ′ α′

−→ P ′] + [P ′′ α′′
−→ P ′′] whenever there is a short exact sequence

0 → P ′ → P → P ′′ → 0.

(b) [P
αβ−→ P ] = [P

α−→ P ] + [P
β−→ P ].

There is another formulation ofK1(R) using infinite general linear group:

Observation. There is a map GLn(R) → K1(R) given by A 7→ [Rn A−→ Rn]. Relation (b)

guarantees that this is a group homomorphism.

Definition 1.4 (Infinite general linear group). Let R be a ring. Let jn : GLn(R) → GLn+1(R)

be the inclusion that adds an additional row and column and a 1 along the diagonal. The infinite

general linear group GL(R) is the colimit:

GL(R) := colim[GL1(R)
j1−→ GL2(R)

j2−→ GL3(R)
j3−→ · · · ]
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Lemma 1.5 (Whitehead). Let E(R) be the subgroup of GL(R) generated by the elementary

matrices. Then E(R) = [GL(R), GL(R)].

Proof. See [3, Lemma 7.10].

Theorem 1.6. The natural map

GL(R)ab = GL(R)/E(R) → K1(R)

is an isomorphism.

Proof. See [3, Theorem 7.6].

Definition 1.7 (Relative K­group). Let R be a ring and I ⊂ R a two­sided ideal. The double

of R along I is the subring of the Cartesian product R×R given by

D(R, I) := {(x, y) ∈ R×R : x− y ∈ I}

Let p1 : D(R, I) → R be the projection to the first component. For i = 0, 1, define the relative

Ki­group of R along I to be

Ki(R, I) := ker

(
(p1)∗ : Ki

(
D(R, I)

)
→ Ki(R)

)

Theorem 1.8. Let R be a ring and I ⊂ R a two­sided ideal. Then there is a exact sequence:

K1(R, I) −→ K1(R) −→ K1(R/I) −→ K0(R, I) −→ K0(R) −→ K0(R/I)

Proof. See [7, Theorem 2.5.4].

This reminds us long exact sequences of homology and homotopy groups. It natural to ask:

Can we extend this sequence further? What are the higherK­groups?

2 Quillen’s Plus Construction

Quillen’s plus­construction arises from his proof of the Adams Conjecture, using ideas from

Sullivan. This gives us a way to construct higherK­groups.
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Definition 2.1 (Perfect group). A group is called perfect if it is equal to its commutator sub­

group.

A perfect radical of a group G is the largest perfect subgroup, denoted by P [G].

Theorem 2.2 (Quillen’s plus construction). LetX be a connected CW complex with base point

x0. Let N be a perfect normal subgroup of π1 := π1(X, x0). Then there is a CW complex X+
N

by attaching 2­cells and 3­cells to X with inclusion i : X → X+
N , such that

(a) The map i∗ : π1(X, x0) → π1(X
+
N , x0) is the quotient map π1 → π1/N .

(b) For any local coefficients L, i.e., L is an Z[π/N ]­module, the maps i∗ : Hn

(
X; i∗(L)

)
→

Hn(X
+
N ;L) are isomorphisms for all n.

Furthermore, i is initial in the homotopy category among all maps f : (X, x0) → (Y, y0),

where Y is connected and f∗(N) = {1} in π1(Y, y0). In particular, X+
N is unique up to homo­

topy.

If N = P [π1], we denote it by X+.

Proof. We want to attatch 2­cells toX to kill N in π1. Then we attatch 3­cells to remedy these

in cellular homology.

First suppose ϕα : S
1 → X are generators of N . We use ϕα as attatching maps of 2­cells to

X to form a new CW complex Y , so π1(Y, x0) = π1/N .

Next, we make use of a covering space of X to construct X+. By [6, Chapter 3.8], there is

a covering map pN : XN → X such that π1(XN , xN) = N . For each cycle ψ̃β : S
1 → XN that

projects to some ϕα, we attatch a 2­cell ẽ2β using ψ̃β as attaching map to get a simply­connected

space Ỹ . Since i ◦ ϕα induces zero map on fundamental groups and Ỹ is built from XN by

attaching 2­cells, i ◦ pX extends to Ỹ . Denote the extended map pY : Ỹ → Y . By construction,

pY is a covering map, so Ỹ is actually the universal covering of Y . Then we have the following

commutative diagram:

XN Ỹ

S1 X Y
ϕα

ϕ̃β
pX

i′

pY

Note that H1(XN ;Z) = π1(XN , xN)
ab = 0. There is a diagram:

4



π1(Ỹ , ỹ)

H2(Ỹ ;Z) H2(Ỹ , XN ;Z) H1(XN ;Z) = 0

h

∂j

where h is the Hurewicz map. Since Ỹ is simply­connected, h is an isomorphism by Hurewicz

Theorem. Thus, j ◦ h is a surjection.

Note that by cellular homology, H2(Ỹ , XN ;Z) is a free abelian group with basis [ẽ2β]. Pick

ψ̃β : S
2 → Ỹ such that (j ◦ h)∗(ψ̃β) = [ẽ2β]. Let ψα = pY ◦ ψ̃α. Finally by attatching 3­cells e3β

onto Y using ψβ as attaching maps, we get the space X+. It remains to show that X+ satisfies

conditions (a)(b).

(a) Since X+ is built from Y by attatching 3­cells, π1(X+, x0) = π1(Y, x0) = π1/N .

(b) Construct the universal covering X̃+ of X+ by attaching 3­cells ẽ3β onto Ỹ as we con­

structed Ỹ . We get the following commutative diagram:

XN Ỹ X̃+

X Y X+

pX

i′

pY

i′′

pX+

We first show that H∗(X̃+, XN ;Z) = 0. Since X̃+ is built from XN by attaching only 2

and 3­cells, the relative cellular complex of the pair looks like:

· · · 0 C3(X̃+, XN) C2(X̃+, XN) 0 0d

It remains to show that d is an isomorphism. Since Ỹ differs from XN only by 2­cells

and from X̃+ only by 3­cells, we have

C3(X̃+, XN) = C3(X̃+, Ỹ ) = H3(X̃+, Ỹ ;Z)

C2(X̃+, XN) = C2(Ỹ , XN) = H2(Ỹ , XN ;Z)

Then the differential d is the same with the composition:

H3(X̃+, Ỹ ;Z) H2(Ỹ ;Z) H2(Ỹ , XN ;Z)∂ j
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Note thatH3(X̃+, Ỹ ;Z) is a free abelian group generated by [ẽ3β]. Since we attatched the

ẽ3β onto Ỹ by ψ̃β , we have ∂([ẽ3β]) = h(ψ̃β). Thus,

d([ẽ3β]) = (j ◦ ∂)([ẽ3β]) = (j ◦ h)(ψ̃β) = [ẽ2β]

This shows that d is a isomorphism.

Since, Hn(X
+, X;L) is the homology of Cn(X̃+, X) ⊗Z[π/N ] L, so Hn(X

+, X;L) = 0

for all n by [2, Theorem 5.13]

For the universal property, the idea is that Hn
(
X+

N , X; πn(Y )
)
= 0 for all n and try to apply

the obstruction theory. However, here Y may not be an abelian space, which requires a general

form of obstruction theory and we do not want to prove it here. Thus, we refer to [5, Proposition

1.1.2]

Proposition 2.3. The plus construction is functorial, i.e., if f : (X, x0) → (Y, y0) is a based

map of connected CW complexes ad f∗(N) ⊂ N ′, where N ⊂ π1(X, x0), N
′ ⊂ π1(Y, y0) are

perfect normal subgroups, then there exists a map f+ : X+
N → Y +

N ′ , unique up to homotopy such

that iY ◦ f = f+ ◦ iX , where iX : X → X+
N , iY : Y → Y +

N ′ are inclusions.

Proof. Apply the universal property to the composite map iY ◦ f .

Definition 2.4. (Higher algberaic K­groups) Let

K(R) := K0(R)×BGL(R)+ and Kn(R) := πn
(
K(R)

)
for n ∈ Z⩾0, where BGL(R) is the classifying space of GL(R).

We need to verify that such definition accords with the previous definitions in the first sec­

tion. This is obvious for K0. For K1, it is easy to see that E(R) is a perfect group, so E(R) is

the perfect radical of GL(R). Thus,

π1
(
K(R)

)
= π1

(
BGL(R)+

)
= GL(R)/P [GL(R)] = GL(R)/E(R) = K1(R)

Definition 2.5 (Higher relativeK­group). For a ringR and a two­sided ideal I ofR, let π : R →

R/I be the natural projection. Then π induces π+ : K(R) → π+
(
K(R)

)
⊂ K(R/I) by Propo­

sition 2.3. LetK(R, I) be the homotopy fiber of π+ and defineKn(R, I) := πn
(
K(R, I)

)
.

6



This gives the long exact sequence:

· · · → Kn+1(R/I) → Kn(R, I) → Kn(R) → Kn(R/I) → · · ·

3 An Introduction to K­theory Spectrum

The last section is a reformulation of higherK­groups coherent with the definition byAtiyah and

Hirzebruch in the first section using the suspension of a space. We want to define a suspension

of a ring R. First we define the suspension of Z:

Definition 3.1 (Suspension of Z). The cone CZ of Z is the set of all infinite matrices with

integral coefficients having only a finite number of non­trivial elements on each row and on each

column, which admits a ring structure under the usual addition and multiplication of matrices.

Let JZ be the ideal of CZ which consists of all matrics having only finitely many non­trivial

coefficients. Finally, let us define the suspension of Z to be the quotient ring ΣZ := CZ/JZ.

Definition 3.2 (Suspension of R). Let R be a ring. The suspension of R is the ring ΣR :=

ΣZ⊗Z R.

Proposition 3.3. Let R be a ring. There is a natural homotopy equivalence:

K(R) ∼= Ω
(
K(ΣR)

)
Thus, K(R) is an infintie loop space.

Proof. See [1, Theorem 4.9].

Corollary 3.4. For any ring R and any integer i ⩾ 0, there is an isomorphism

Ki(R) ∼= Ki+1(ΣR)

Proof. By definition,

Ki(R) = πi
(
K(R)

)
= πi

(
Ω
(
K(ΣR)

))
= πi+1

(
K(ΣR)

)
= Ki+1(ΣR)
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Definition 3.5 (K­theory spectrum). Let R be a ring. The K­theory spectrum of R is the spec­

trumKR whose n­th space is (KR)n = K(ΣR) for all n ⩾ 0.
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